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Introduction

o Biological growth is inherently a dynamic, nonlinear trajectory 
shaped by continuous gene–environment interaction across 
plant and animal systems.

o Conventional genomic prediction aggregates trajectories into 
static endpoint summaries.

o Static prediction lack in explaining how and when traits unfold 
through time and respond to environmental variation.

o Despite advances in G×E modeling, longitudinal growth, climate 
covariates, and genetic structure are rarely unified within a 
single inferential framework.

o This gap limits environment-based prediction in breeding, 
conservation, and assisted adaptation.

Objective

❖ Develop a framework that operates on nonlinear growth 
trajectories, enabling biologically interpretable inference and 
uncertainty-aware prediction across time and environments.

❖ Broadly applicable to high-throughput phenotyping in 
plant and animal systems. 

❖ we demonstrate the model’s utility through growth of tree-
rings which serve as a natural archive of climate impacts on 
tree growth. 

❖ Model climate based genomic prediction which is critical 
for climate-sensitive seed transfer, reforestation planning, and 
long-term forest resilience.
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Data

We used interior lodgepole pine (Pinus contorta var. latifolia 
Douglas) trees, sampled throughout the growth period from 1986-
2017, from half-sib families across four locations (Judy creek, 
Virginia, Swan lake, Timeau) in central Alberta, Canada, to assess 
genetic and environmental regulators of growth. As for the 
genotype data we considered around 46k SNPs across 200 
scaffolds to compute the kinship matrix (G). By using the 
coordinates of the sites, we collected the historical and future 
annual climate data from ClimateNA web version.

Statistical Modelling
In this study, we addressed the knowledge gap using a hierarchical 

Bayesian framework that models tree-ring data as growth trajectories, 
capturing nonlinear growth curve through a Gompertz function (S-
shaped) 
   
 𝑅 = 𝑨 𝑒𝑥𝑝 −𝑒𝑥𝑝{−𝑲 𝑡 − 𝚿 }                           …….(1)

 Each Gompertz parameter—representing maximum growing 
capacity (A), growth rate (K), and inflection point (Ψ) — is further 
decomposed into key climate-resilience parameters, such as site 
effect, overall additive genetic effects, and climate sensitivity 
throughout growth period. 

for each, 
      Θ ∈ {𝐴, K, Ψ} ,    𝑙𝑜𝑔 Θ = 𝛍 + 𝛂 + 𝐏 + 𝐒 + 𝐂              …….(2)

✓ This hierarchical decomposition separates genetic (𝛂), 
permanent(P), site (S)and environmental(C) effects, while 
accommodating uncertainty through fully Bayesian inference, 
revealing how climate variability shapes growth potential.

✓ This approach enables probabilistic forecasting of growth 
trajectories for each genotype in unobserved future environments.

✓ We further extend posterior predictive simulations to estimate 
tree-ring growth parameters under the projected climate 
conditions.

Modelling Architecture

The genetic components for each tree are collected into a six-
dimensional vector (refer (1) and (2)) with a kinship-coupled 
multivariate normal prior such that 

𝑣𝑒𝑐 Gmat ∼  𝑁  0, Σg ⊗ G

This structure captures both genetic correlations among growth 
parameters and genetically structured responses to climate. 

We chose weakly informative priors for the effects.

 If ϕ denotes all hierarchical components. The posterior density is
 
     p ϕ R ∝ p R Θ, σ2 p Θ ϕ p ϕ             ………..(3)

where Θ is deterministically computed from ϕ. 

Because the Gompertz curve induces a nonlinear likelihood, the 
posterior has no closed-form expression. We therefore use Markov 
chain Monte Carlo methods, with Metropolis–Hastings (MH) 
design.

“Instead of predicting growth year by year, we are interested in predicting 
how each individual grows, and how climate shifts that trajectory.”

Prediction Capacity

Along with the future climate-based prediction on the existing 
sites and known genotypes . Our model is also capable to predict 
growth trajectories for new genotypes and new sites.

• For a new sample(genotype), draw the posterior conditional 
on kinship.

• For a  new site, draw the site effect corresponding to the new 
site or a posterior predictive value if the site is unobserved.

 This way the result is a full posterior distribution over future 
growth trajectories, enabling quantification of uncertainty in both 
genetic and climatic components.

 Overall, the outcome of this study provides actionable insights 
for climate-adaptive forestry strategies, supporting proactive 
genotype selection for orchard parents, reforestation planning, 
and long-term forest resilience.

Simulation Study

We designed our simulation study based on this following key 
questions:

• Can we recover genetic growth parameters?
• Can we separate climate effects from time trends? 
• Can we distinguish genetic vs permanent environmental 

effects? 
• What sample sizes are needed?

Simulation Results: Model Validation and Identifiability
Simulation experiments calibrated to the real lodgepole pine data 
demonstrate:
❑  The proposed framework reliably recovers genotype-

specific growth parameters and climate sensitivities under 
realistic sampling conditions. 

❑ When climate variation is not fully confounded with time, genetic 
effects and climate responses are jointly identifiable, 
validating the use of this prediction.

❑ When climate variation is confounded with time, uncertainty in 
climate sensitivity appropriately increases rather than 
producing spurious effects, highlighting the model’s 
robustness and conservative behavior.

Results and Findings

Please reach out to me at  soumodip.pal@okstate.edu  or Chen’s lab at  charles.chen@okstate.edu for any queries

Limitation and Future Work
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➢ MCMC shows stable exploration and good mixing for global 
parameters—strong evidence that the hierarchical trajectory 
model is computationally feasible for the full pipeline. 

➢ Current results revealed a significant trade-off (r = −0.6) 
between growing capacity (A) and growth rate (K).

➢ Warmer locations has modestly accelerated early-season 
growth. (A ≈ 82)

➢ Colder locations are likely to experience a reduction in 
maximum growing capacity. (↓A)

➢ Most between-tree heterogeneity concentrates in timing (Ψ) 
rather than just size or rate—supporting our claim that climate 
resilience is often “when growth happens,” not only “how 
much.”

➢ Using No U-Turn Sampler (NUTS) we achieved higher mean 
acceptance rate ≈ 0.97 and tight global parameter intervals 
enabling stable estimation of climate-driven trajectory shifts.

➢ Our posterior predictive simulations reproduced individual 
trajectories accurately: observed growth of ring width for 
representative trees fell within the 95% posterior intervals, 
and residuals showed no systematic bias.
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Although the hierarchical Bayesian framework provides rich 
uncertainty quantification and biologically interpretable inference, full 
MCMC inference remains computationally intensive, particularly 
when estimating high-dimensional genetic covariance structures and 
genotype × climate interactions across thousands of trees. 

1. Ongoing and planned improvements include more aggressive 
reparameterization and non-centering strategies.

2. Partial marginalization of random effects, and block-wise updating 
schemes to improve effective sample size per second. 
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