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enabling stable estimation of climate-driven trajectory shifts.

<

“* Develop a framework that operates on nonlinear growth

. . . : : ] ) This structure captures both genetic correlations among growth » Our posterior predictive simulations reproduced individual
trajectories, enabling biologically interpretable inference and . . . . . . .
: iy . . parameters and genetically structured responses to climate. trajectories accurately: observed growth of ring width for
uncertainty-aware prediction across time and environments. : oy o . .
representative trees fell within the 95% posterior intervals,
. We chose weakly informative priors for the effects. and residuals showed no systematic bias.

+ Broadly applicable to high-throughput phenotyping in
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“ Model climate based genomic prediction which is critical . . I
’ . g 5 P : . Because the Gompertz curve induces a nonlinear likelihood, the

for climate-sensitive seed transfer, reforestation planning, and . .

o posterior has no closed-form expression. We therefore use Markov
long-term forest resilience.

chain Monte Carlo methods, with Metropolis—Hastings (MH)
design.
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 For a new sample(genotype), draw the posterior conditional
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We used interior lodgepole pine (Pinus contorta var. latifolia site or a posterior predictive value if the site is unobserved. leltathll and F uture u Ol‘k
Douglas) trees, sampled throughout the growth period from 1986- . . . -
2017, from half-sib families across four locations (Judy -creek, This wdy the. result 15 4 full po.st'erlo.r distribution Over future || Although the hierarchical Bayesian framework provides rich
Virginia, Swan lake, Timeau) in central Alberta, Canada, to assess growth trajectories, enabling quantification of uncertainty in both uncertainty quantification and biologically interpretable inference, full
genetic and environmental regu]ators of growth. As for the genetiC and climatic components. MCMC inference remains computationally intensive, particularly
genotype data we considered around 46k SNPs across 200 when estimating high-dimensional genetic covariance structures and
scaffolds to compute the kinship matrix (G). By using the Overall, the outcome of this study provides actionable insights || genotype X climate interactions across thousands of trees.
coordinates of the sites, we collected the historical and future for climate-adaptive forestry strategies, supporting proactive | | | |
annual climate data from ClimateNA web version genotype selection for orchard parents, reforestation planning, 1. Ongoing and planned improvements include more aggressive
' and long-term forest resilience. reparameterization and non-centering strategies.
Statistical Modelling 2. Partial marginalization of random effects, and block-wise updating
schemes to improve effective sample size per second.
In this study, we addressed the knowledge gap using a hierarchical . .
Bayesian framework that models tree-ring data as growth trajectories, Slmlllatl()ll StUdY

capturing nonlinear growth curve through a Gompertz function (S-
shaped)
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