RES-FOR HIGHLIGHT #7a

June 2020

Genetic variation in stomatal sensitivity to atmospheric drought & water use efficiency in lodgepole pine & white spruce progeny trial trees

Overview

We examined genetic variation in two drought resistance traits: 1) stomatal sensitivity to atmospheric drought; and 2) water use efficiency in field progeny trials of the Region C lodgepole pine (PI) & Region D1 white spruce (Sw) tree improvement programs.

Goals & Objectives

- 1. A key plant response to drought is to close their stomata to prevent mortality caused by losing too much water. Our **first goal** was to compare families in their stomata sensitivity through measuring stomatal conductance (g_s, how fast water is lost on a per area 'leaf' basis) to atmospheric drought measured as vapor pressure deficit (VPD, a metric that combines air temperature and humidity).
- 2. The closure of stomata comes with a cost of reduction in photosynthesis. Intrinsic water use efficiency, indicated by measuring the stable carbon isotope ratio (δ^{13} C), captures how many carbon molecules a plant uses for a given amount of water lost, and thus has been used as a selection target in breeding for drought resistant crop varieties. Crop breeders realized that focusing on δ^{13} C *per se* could result in varieties that had low g_s and low growth rate; Ideally, one should select for genotypes with a high δ^{13} C ratio driven by a high carboxylation capacity, i.e., the ability to achieve greater photosynthesis at a given g_s. Our **second goal** was to compare families in their δ^{13} C ratio and to test if there was a positive genetic correlation between δ^{13} C and foliar nitrogen content (N_{area}), a surrogate for carboxylation capacity.
- 3. Our **third goal** was to test if genetic values of stomatal sensitivity and δ^{13} C of the families were correlated with climate conditions at the mothers' location of origin.

Methods

We measured g_s under naturally varying ambient VPD in 40 PI families and 34 Sw families in two field progeny trials (one trial per species), and measured N_{area} and δ^{13} C in a subset of the families that: a) covered the entire range of height breeding values of the trees; and b) were also tested in a greenhouse trial (Highlight Sheet #7b).

Results

- The PI families showed significant variation in g_s (but not in stomatal sensitivity to VPD), which was negatively correlated with δ¹³C (Fig. 1). This result suggests that the genetic variation in δ¹³C among PI families was primarily driven by g_s.
- 2. In both species, progenies with higher N_{area} showed higher δ^{13} C, but the two traits showed no positive genetic correlation. This result suggests that N_{area} was not a major driver for genetic variation in δ^{13} C, but it might be possible to boost water use efficiency through manipulating environmental factors such as planting at more fertile sites, that could increase N_{area}.
- The Sw families showed significant variation in δ¹³C and in stomatal sensitivity to VPD. The families
 of mothers that originated from drier, warmer habitats had more sensitive stomata and higher water
 use efficiency (Fig. 2). No such climate- trait correlations were found among the PI families.

Conclusions

We found significant genetic variation in δ^{13} C, and positive phenotypic correlations between δ^{13} C and foliar nitrogen content (N_{area}) in both species. In addition, we found warmer, drier habitats were occupied by Sw individuals with higher water use efficiency and more sensitive stomatal responses to atmospheric drought.

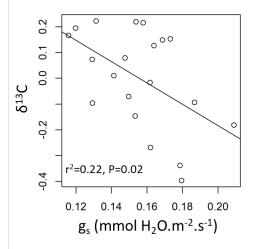
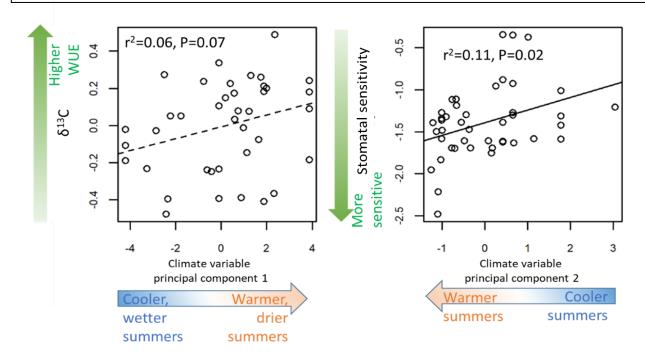



Fig. 1 Breeding values of $\delta^{13}C$ (centered around 0) and g_s of the PI families. Solid line is the regression line.

Fig. 2 Principle component analysis of breeding values of δ^{13} C (left) and stomatal sensitivity (slope of g_s against VPD) vs. climate conditions (right) at the mothers' location of origin. Dash and solid lines are the regression lines.

For more information on the RES-FOR project please contact: Barb Thomas: bthomas@ualberta.ca or Stacy Bergheim: sberghei@ualberta.ca For more information on this highlight sheet please contact: <u>xwei6@ualberta.ca</u> or <u>bthomas@ualberta.ca</u>

